4.3 Derivative and the Shapes of Graphs

- What does f' say about f?

Def. (a) If $f'(x) > 0$ on an interval, then f is *increasing* on that interval.

(b) If $f'(x) < 0$ on an interval, then f is *decreasing* on that interval.

Exp. Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.
The First Derivative Test Suppose that c is a critical number of a continuous function f, where $c \in (a, b)$.

(a) If $f'(x) > 0 \forall x \in (a, c)$ and $f'(x) < 0 \forall x \in (c, b)$, then f has a local maximum at c.

(b) If $f'(x) < 0 \forall x \in (a, c)$ and $f'(x) > 0 \forall x \in (c, b)$, then f has a local minimum at c.

(b) If f' does not change sign at c, then f has no local maximum or minimum at c.
(a) Local maximum

(b) Local minimum

(c) No maximum or minimum
Exp. \(f(x) = 3x^4 - 4x^3 - 12x^2 + 5 \), find local minimum and local maximum of \(f \).

- **What does \(f'' \) say about \(f \)?**

Def.
(a) If the graph of \(f \) lies above all of its tangents on \(I \), then it is called **concave upward** on \(I \).
(b) If the graph of \(f \) lies below all of its tangents on \(I \), then it is called **concave downward** on \(I \).
Concavity Test

(a) If \(f''(x) > 0 \ \forall x \in I \), then \(f \) is concave upward on \(I \).

(b) If \(f''(x) < 0 \ \forall x \in I \), then \(f \) is concave downward on \(I \).
Def. A point \(P \) on a curve \(y = f(x) \) is called an inflection point (反曲點) if \(f \) is continuous there and the curve changes the concavity at \(P \).
The Second Derivatives Test Suppose f'' is continuous near C.

(a) If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at C.

(b) If $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at C.
Exp. Sketch a possible graph of a function f that satisfies the following conditions:

1. $f'(x) > 0$ on $(-\infty, 1)$, $f'(x) < 0$ on $(1, \infty)$.
2. $f''(x) > 0$ on $(-\infty, -2)$ and $(2, \infty)$, $f''(x) < 0$ on $(-2, 2)$.
3. $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to \infty} f(x) = 0$.
Exercise 4.3

1, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 27, 28, 29, 30, 43, 49, 57.