4.7 Antiderivatives

Def. A function F is called an antiderivative of f on an interval I if $F'(x) = f(x)$ for all $x \in I$.

Theorem. If F is an antiderivative of f on I, then $F(x) + c$ is antiderivative of f.
Exp. Find antiderivative of each of the following functions.

(a) \(f(x) = \sin x \)

(b) \(f(x) = \frac{1}{x} \)

(c) \(f(x) = x^n; n \neq -1 \)

(d) \(f(x) = e^x \)

(e) \(f(x) = \cos x \)

(f) \(f(x) = \sin x \)

(g) \(f(x) = \sec^2 x \)

(h) \(f(x) \sec x \tan x \)

(i) \(f(x) = \frac{1}{1 + x^2} \)

(j) \(f(x) = \frac{1}{\sqrt{1 - x^2}} \)
Theorem. If \(F (x) \) and \(G (x) \) are the antiderivatives of \(f (x) \) and \(g (x) \) respecting, then

1. \(cF (x) \) is an antiderivative of \(cf (x) \)
2. \(F (x) \pm G (x) \) is an antiderivative of \(f (x) \pm g (x) \)

Exp. Find \(f \) if

\[
f'(x) = 4 \sin x + \frac{2x^5 - \sqrt{x}}{x}
\]

Exp. Find \(f \) if \(f'(x) = e^x + 20 \left(1 + x^2 \right)^{-1} \) and \(f(0) = -2 \)
Exp. Find \(f \) if \(f''(x) = 12x^2 + 6x - 4 \),
\[
f(0) = 4 \quad \text{and} \quad f(1) = 1.
\]

Exercise 4.7
1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 22, 25, 27, 28, 31.